
1 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Steinbuch Centre for Computing (SCC)

Distributed File Checksumming

Practical Course: Data Management and Data Analysis at the SCC

KIT – The Research University in the Helmholtz Association www.kit.edu



Outline

2 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

1 Problem Description
2 Design

1 Key Aspects
2 Schema

3 Work Queue
1 EWMA Scheduler
2 Simulation
3 Metrics
4 Full Test Run

4 I/O Performance
5 Evaluation
6 Lessons Learned



Problem Description

3 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Motivation

The SCC operates several large file systems (total 44 PB)
Powered by IBM Spectrum Scale (formerly GPFS) and RAID
No verification of long-term file integrity: Silent data corruption?

Goal

Develop a distributed system which calculates file content checksums
System runs regularly to maintain database of checksums
Emits corruption warnings in time to restore files from backup



Problem Description

3 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Motivation

The SCC operates several large file systems (total 44 PB)
Powered by IBM Spectrum Scale (formerly GPFS) and RAID
No verification of long-term file integrity: Silent data corruption?

Goal

Develop a distributed system which calculates file content checksums
System runs regularly to maintain database of checksums
Emits corruption warnings in time to restore files from backup



Problem Description

4 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Challenges

Resilience to node and process failures
Ability to scale up and down
Online file systems: Don’t impair regular users’ work



Design: Key Aspects

5 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Types of nodes: Master, Worker
Meta Data Database (SQL): Persistent store of file meta data
including checksum
Files: Identified by path, changes detected via modification time
(POSIX)
Master↔ Worker coordination: Central work queue
Types of runs

Full: Read all files, emit warnings on checksum mismatch
Incremental: Read only changed files



Design: Schema

6 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Spectrum Scale 
Management API 

Master

DB Inserts

Producer WriteBack
Worker

List Policy Table SyncSpectrum Scale 
POSIX Mount 

Worker Pool

Checksum Worker

Checksum Worker

Phase 1 

Phase 2 

. . . 



Work Queue

7 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

LedisDB with gocraft/work

Jobs must be queued explicitly
Queue length can be queried

Scheduler: Objectives

Queue rarely exhausted (queue length == 0)
Small queue length
Low frequency scheduling



Work Queue

7 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

LedisDB with gocraft/work

Jobs must be queued explicitly
Queue length can be queried

Scheduler: Objectives

Queue rarely exhausted (queue length == 0)
Small queue length
Low frequency scheduling



Work Queue: EWMA Scheduler

8 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Idea: Enqueue matching current consumption
Perform scheduling operation at regular interval intv
Track consumption C, deviation D from expected consumption

Scheduler Phases
Start up

High-frequent scheduling, intv = 10ms
Establish values for EWMA (C), EWMA (D)
Min queue length: WorkerNum×NWorkerNum

Maintaining
Scheduling at greater interval, intv = 10s
Min queue length: E (C during intv) + NDeviation ×E (D during intv)



Work Queue: EWMA Scheduler

8 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Idea: Enqueue matching current consumption
Perform scheduling operation at regular interval intv
Track consumption C, deviation D from expected consumption

Scheduler Phases
Start up

High-frequent scheduling, intv = 10ms
Establish values for EWMA (C), EWMA (D)
Min queue length: WorkerNum×NWorkerNum

Maintaining
Scheduling at greater interval, intv = 10s
Min queue length: E (C during intv) + NDeviation ×E (D during intv)



Work Queue: Simulation

9 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Parameters

WorkerNum = 5
SchedulingSteps = 10000

intv = 1s (Maintaining)
NDeviation = 5

0

20

40

60

0 s 2,500 s 5,000 s 7,500 s

Time

C
on

su
m

pt
io

n



Work Queue: Metrics

10 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Efficiency
Upper bound on time lost due to empty queue
Queue exhausted during scheduling interval? → Regard interval as
idle
Efficiency E = Non-Idle Time

Total Time , Inefficiency 1− E

Evaluation

0.00

0.05

0.10

0 10 20 30 40

Deviation N

In
ef

fic
ie

nc
y

intv = 1s (Maintaining)
WorkerNum = 5



Work Queue: Metrics

10 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Efficiency
Upper bound on time lost due to empty queue
Queue exhausted during scheduling interval? → Regard interval as
idle
Efficiency E = Non-Idle Time

Total Time , Inefficiency 1− E

Evaluation

0.00

0.05

0.10

0 10 20 30 40

Deviation N

In
ef

fic
ie

nc
y

intv = 1s (Maintaining)
WorkerNum = 5



Work Queue: Full Test Run

11 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

File tree generated using Lognormal
16 Workers: 3 TiB of file data, 600 k files

0

100

200

300

400

500

0 s 5,000,000 s 10,000,000 s 15,000,000 s 20,000,000 s 25,000,000 s

Time

C
on

su
m

pt
io

n



I/O Performance

12 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Goal: Restrict impact on other file system users during checksumming
Idea: Rate limit I/O throughput on the syscall level
Every call to read() is guarded by a rate limit request

Limits

Master: Global I/O throughput limit
Worker: Local I/O throughput limit



Evaluation

13 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Migration of file system subtree
382 TiB of file data, 99 M files
Deployed lsdf-checksum to verify file integrity



Evaluation: System Performance
Total Disk I/O of the Worker Cluster (13 Nodes)

14 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Initial concurrency (per node):
2
Initial max_node_throughput:
500 MiB/s

Final concurrency (per node):
10
Final max_node_throughput:
800 MiB/s



Evaluation: System Performance
Mean CPU of the Worker Cluster (13 Nodes)

15 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Initial concurrency (per node):
2
Initial max_node_throughput:
500 MiB/s

Final concurrency (per node):
10
Final max_node_throughput:
800 MiB/s



Evaluation: Queue

16 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

0

5000

10000

15000

0 s 50,000,000 s 100,000,000 s

Time

C
on

su
m

pt
io

n



Lessons Learned

17 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Testing vs production environments and data
Volume: Orders of magnitude more data
Variety: Edge cases in real-world data
Reduced observability

Complex tools introduce complex problems
Was SQL a good choice?



References I

1 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

David SH Rosenthal. “Keeping bits safe: how hard can it be?” In:
Communications of the ACM 53.11 (2010), pp. 47–55.

The Spectrum Scale logo is Copyright International Business
Machines Corporation. IBM Spectrum Scale is a trademark of the
International Business Machines Corporation.
The Go Logo is is Copyright The Go Authors.
The LedisDB Logo is Copyright siddontang.
Plots have been created using R.
Further graphics have been created using https://www.draw.io/

https://www.draw.io/


Design: Technology

2 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Go

Explicit data structures (low-level?)
Lightweight concurrency
Compiles statically-typed native
binaries

SHA-1

160 bit (20 byte) hash sums
Considered not-cryptographically secure
Performance (gpfstest-03, Intel Xeon E5 2640 v2)

437 MiB/s sha1sum

301 MiB/s Go implementation comparable to Worker



Design: Technology

2 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Go

Explicit data structures (low-level?)
Lightweight concurrency
Compiles statically-typed native
binaries

SHA-1

160 bit (20 byte) hash sums
Considered not-cryptographically secure
Performance (gpfstest-03, Intel Xeon E5 2640 v2)

437 MiB/s sha1sum

301 MiB/s Go implementation comparable to Worker



Work Queue: Simulation
Assumption: File Size Distribution

3 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Lognormal Distribution: Lognormal (µ, σ2)

Parameters: σ = 11, µ = 3

0.00

0.25

0.50

0.75

1.00

0 G 1 G 2 G 3 G 4 G

File Size

C
D

F

0.00

0.25

0.50

0.75

1.00

100 100 k 100 M

File Size

C
D

F



Work Queue: In Practice

4 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Work Packs

Goal: Reduce network and de-queuing overhead
Each job: Work Pack containing multiple files
Total file size has to exceed threshold, e.g. 5 MiB

Randomisation

Goal: Uniform distribution of file sizes over time
Explicitly order files randomly (SQL: RAND())
Add files to Work Pack in this order



Work Queue: In Practice

4 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Work Packs

Goal: Reduce network and de-queuing overhead
Each job: Work Pack containing multiple files
Total file size has to exceed threshold, e.g. 5 MiB

Randomisation

Goal: Uniform distribution of file sizes over time
Explicitly order files randomly (SQL: RAND())
Add files to Work Pack in this order



Work Queue: Metrics
Evaluation

5 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

0.002

0.004

0.006

0 250 500 750 1000

Worker Num

In
ef

fic
ie

nc
y

intv = 1s (Maintaining)
NDeviation = 5

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0 s 50 s 100 s 150 s

Interval

In
ef

fic
ie

nc
y

WorkerNum = 5
NDeviation = 5



I/O Performance: Token Bucket

6 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

Bucket containing a number of tokens
Tokens are replenished at constant rate
Upper bound on number of tokens→ burstiness

0

25

50

75

100

0 20 40 60

Time

To
ke

ns


	Appendix

