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Motivation

The SCC operates several large file systems (total 44 PB)
Powered by IBM Spectrum Scale (formerly GPFS) and RAID
No verification of long-term file integrity: Silent data corruption?

Goal

Develop a distributed system which calculates file content checksums
System runs regularly to maintain database of checksums
Emits corruption warnings in time to restore files from backup
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Problem Description
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Challenges

Resilience to node and process failures
Ability to scale up and down
Online file systems: Don’t impair regular users’ work



Design: Key Aspects
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Types of nodes: Master, Worker
Meta Data Database (SQL): Persistent store of file meta data
including checksum
Files: Identified by path, changes detected via modification time
(POSIX)
Master↔ Worker coordination: Central work queue
Types of runs

Full: Read all files, emit warnings on checksum mismatch
Incremental: Read only changed files



Design: Schema
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Work Queue
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LedisDB with gocraft/work

Jobs must be queued explicitly
Queue length can be queried

Scheduler: Objectives

Queue rarely exhausted (queue length == 0)
Small queue length
Low frequency scheduling
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Work Queue: EWMA Scheduler
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Idea: Enqueue matching current consumption
Perform scheduling operation at regular interval intv
Track consumption C, deviation D from expected consumption

Scheduler Phases
Start up

High-frequent scheduling, intv = 10ms
Establish values for EWMA (C), EWMA (D)
Min queue length: WorkerNum×NWorkerNum

Maintaining
Scheduling at greater interval, intv = 10s
Min queue length: E (C during intv) + NDeviation ×E (D during intv)
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Work Queue: Simulation
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Parameters

WorkerNum = 5
SchedulingSteps = 10000

intv = 1s (Maintaining)
NDeviation = 5
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Work Queue: Metrics
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Efficiency
Upper bound on time lost due to empty queue
Queue exhausted during scheduling interval? → Regard interval as
idle
Efficiency E = Non-Idle Time

Total Time , Inefficiency 1− E

Evaluation
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Work Queue: Full Test Run
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File tree generated using Lognormal
16 Workers: 3 TiB of file data, 600 k files
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I/O Performance
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Goal: Restrict impact on other file system users during checksumming
Idea: Rate limit I/O throughput on the syscall level
Every call to read() is guarded by a rate limit request

Limits

Master: Global I/O throughput limit
Worker: Local I/O throughput limit



Evaluation
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Migration of file system subtree
382 TiB of file data, 99 M files
Deployed lsdf-checksum to verify file integrity



Evaluation: System Performance
Total Disk I/O of the Worker Cluster (13 Nodes)
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Initial concurrency (per node):
2
Initial max_node_throughput:
500 MiB/s

Final concurrency (per node):
10
Final max_node_throughput:
800 MiB/s



Evaluation: System Performance
Mean CPU of the Worker Cluster (13 Nodes)
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Evaluation: Queue

16 17.09.2018 Paul Skopnik - Distributed File Checksumming - Verifying Data Integrity in Large File Systems Steinbuch Centre for Computing (SCC)

0

5000

10000

15000

0 s 50,000,000 s 100,000,000 s

Time

C
on

su
m

pt
io

n



Lessons Learned
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Testing vs production environments and data
Volume: Orders of magnitude more data
Variety: Edge cases in real-world data
Reduced observability

Complex tools introduce complex problems
Was SQL a good choice?
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Design: Technology
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Go

Explicit data structures (low-level?)
Lightweight concurrency
Compiles statically-typed native
binaries

SHA-1

160 bit (20 byte) hash sums
Considered not-cryptographically secure
Performance (gpfstest-03, Intel Xeon E5 2640 v2)

437 MiB/s sha1sum

301 MiB/s Go implementation comparable to Worker
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Work Queue: Simulation
Assumption: File Size Distribution
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Lognormal Distribution: Lognormal (µ, σ2)

Parameters: σ = 11, µ = 3
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Work Queue: In Practice
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Work Packs

Goal: Reduce network and de-queuing overhead
Each job: Work Pack containing multiple files
Total file size has to exceed threshold, e.g. 5 MiB

Randomisation

Goal: Uniform distribution of file sizes over time
Explicitly order files randomly (SQL: RAND())
Add files to Work Pack in this order
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Work Queue: Metrics
Evaluation
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I/O Performance: Token Bucket
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Bucket containing a number of tokens
Tokens are replenished at constant rate
Upper bound on number of tokens→ burstiness
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