

Distributed File Checksumming

Practical Course: Data Management and Data Analysis at the SCC

Outline

- Problem Description
- Design
 - Mey Aspects
 - 2 Schema
- Work Queue
 - EWMA Scheduler
 - 2 Simulation
 - Metrics
 - Full Test Run
- I/O Performance
- Evaluation
- Lessons Learned

Problem Description

Motivation

- The SCC operates several large file systems (total 44 PB)
- Powered by IBM Spectrum Scale (formerly GPFS) and RAID
- No verification of long-term file integrity: Silent data corruption?

Goal

- Develop a distributed system which calculates file content checksums
- System runs regularly to maintain database of checksums
- Emits corruption warnings in time to restore files from backup

Problem Description

Motivation

- The SCC operates several large file systems (total 44 PB)
- Powered by IBM Spectrum Scale (formerly GPFS) and RAID
- No verification of long-term file integrity: Silent data corruption?

Goal

- Develop a distributed system which calculates file content checksums
- System runs regularly to maintain database of checksums
- Emits corruption warnings in time to restore files from backup

Problem Description

Challenges

- Resilience to node and process failures
- Ability to scale up and down
- Online file systems: Don't impair regular users' work

Design: Key Aspects

- Types of nodes: Master, Worker
- Meta Data Database (SQL): Persistent store of file meta data including checksum
- Files: Identified by path, changes detected via modification time (POSIX)
- Master ↔ Worker coordination: Central work queue
- Types of runs
 - Full: Read all files, emit warnings on checksum mismatch
 - Incremental: Read only changed files

Design: Schema

Work Queue

- LedisDB with gocraft/work
- Jobs must be queued explicitly
- Queue length can be queried

Scheduler: Objectives

- Queue rarely exhausted (queue length == 0)
- Small queue length
- Low frequency scheduling

Work Queue

- LedisDB with gocraft/work
- Jobs must be queued explicitly
- Queue length can be queried

Scheduler: Objectives

- Queue rarely exhausted (queue length == 0)
- Small queue length
- Low frequency scheduling

Work Queue: EWMA Scheduler

- Idea: Enqueue matching current consumption
- Perform scheduling operation at regular interval intv
- Track consumption *C*, deviation *D* from expected consumption

Scheduler Phases

- Start up
 - High-frequent scheduling, intv = 10ms
 - Establish values for EWMA (C), EWMA (D)
 - Min queue length: WorkerNum × N_{WorkerNum}
- Maintaining
 - Scheduling at greater interval, intv = 10s
 - Min queue length: $\mathbb{E}(C \text{ during } intv) + N_{Deviation} \times \mathbb{E}(D \text{ during } intv)$

Work Queue: EWMA Scheduler

- Idea: Enqueue matching current consumption
- Perform scheduling operation at regular interval intv
- Track consumption *C*, deviation *D* from expected consumption

Scheduler Phases

- Start up
 - High-frequent scheduling, intv = 10ms
 - Establish values for EWMA (C), EWMA (D)
 - Min queue length: WorkerNum × N_{WorkerNum}
- Maintaining
 - Scheduling at greater interval, intv = 10s
 - lacktriangledown Min queue length: $\mathbb{E}\left(\textit{C} \text{ during } \textit{intv}\right) + \textit{N}_{\textit{Deviation}} \times \mathbb{E}\left(\textit{D} \text{ during } \textit{intv}\right)$

Work Queue: Simulation

Parameters

- WorkerNum = 5
- SchedulingSteps = 10000

- intv = 1s (Maintaining)
- $N_{Deviation} = 5$

Work Queue: Metrics

Efficiency

- Upper bound on time lost due to empty queue
- \blacksquare Queue exhausted during scheduling interval? \to Regard interval as idle
- Efficiency $E = \frac{\text{Non-Idle Time}}{\text{Total Time}}$, Inefficiency 1 E

Work Queue: Metrics

Efficiency

- Upper bound on time lost due to empty queue
- \blacksquare Queue exhausted during scheduling interval? \to Regard interval as idle
- Efficiency $E = \frac{\text{Non-Idle Time}}{\text{Total Time}}$, Inefficiency 1 E

Evaluation

- intv = 1s (Maintaining)
- WorkerNum = 5

17 09 2018

Work Queue: Full Test Run

- File tree generated using Lognormal
- 16 Workers: 3 TiB of file data, 600 k files

I/O Performance

- Goal: Restrict impact on other file system users during checksumming
- Idea: Rate limit I/O throughput on the syscall level
- Every call to read() is guarded by a rate limit request

Limits

- Master: Global I/O throughput limit
- Worker: Local I/O throughput limit

Evaluation

- Migration of file system subtree
- 382 TiB of file data, 99 M files
- Deployed Isdf-checksum to verify file integrity

Evaluation: System Performance

Total Disk I/O of the Worker Cluster (13 Nodes)

- Initial concurrency (per node):
- Initial max_node_throughput: 500 MiB/s

- Final concurrency (per node): 10
- Final max_node_throughput: 800 MiB/s

Evaluation: System Performance

Mean CPU of the Worker Cluster (13 Nodes)

- Initial concurrency (per node):
- Initial max_node_throughput: 500 MiB/s

- Final concurrency (per node): 10
- Final max_node_throughput: 800 MiB/s

Evaluation: Queue

Lessons Learned

- Testing vs production environments and data
 - Volume: Orders of magnitude more data
 - Variety: Edge cases in real-world data
 - Reduced observability
- Complex tools introduce complex problems
 - Was SQL a good choice?

References I

- David SH Rosenthal. "Keeping bits safe: how hard can it be?" In: *Communications of the ACM* 53.11 (2010), pp. 47–55.
- The Spectrum Scale logo is Copyright International Business Machines Corporation. IBM Spectrum Scale is a trademark of the International Business Machines Corporation.
- The Go Logo is is Copyright The Go Authors.
- The LedisDB Logo is Copyright siddontang.
- Plots have been created using R.
- Further graphics have been created using https://www.draw.io/

Design: Technology

Go

- Explicit data structures (low-level?)
- Lightweight concurrency
- Compiles statically-typed native binaries

SHA-1

- 160 bit (20 byte) hash sums
- Considered not-cryptographically secure
- Performance (gpfstest-03, Intel Xeon E5 2640 v2)
 437 MiB/s sha1sum
 301 MiB/s Go implementation comparable to Work

Design: Technology

Go

- Explicit data structures (low-level?)
- Lightweight concurrency
- Compiles statically-typed native binaries

SHA-1

- 160 bit (20 byte) hash sums
- Considered not-cryptographically secure
- Performance (gpfstest-03, Intel Xeon E5 2640 v2)
 - 437 MiB/s sha1sum
 - 301 MiB/s Go implementation comparable to Worker

Work Queue: Simulation

Karlsruhe Institute of Technology

Assumption: File Size Distribution

- Lognormal Distribution: Lognormal (μ, σ^2)
- Parameters: $\sigma = 11$, $\mu = 3$

Work Queue: In Practice

Work Packs

- Goal: Reduce network and de-queuing overhead
- Each job: Work Pack containing multiple files
- Total file size has to exceed threshold, e.g. 5 MiB

Randomisation

- Goal: Uniform distribution of file sizes over time
- Explicitly order files randomly (SQL: RAND())
- Add files to Work Pack in this order

Work Queue: In Practice

Work Packs

- Goal: Reduce network and de-queuing overhead
- Each job: Work Pack containing multiple files
- Total file size has to exceed threshold, e.g. 5 MiB

Randomisation

- Goal: Uniform distribution of file sizes over time
- Explicitly order files randomly (SQL: RAND())
- Add files to Work Pack in this order

17 09 2018

Work Queue: Metrics

Evaluation

- WorkerNum = 5
- $N_{Deviation} = 5$

17.09.2018

I/O Performance: Token Bucket

- Bucket containing a number of tokens
- Tokens are replenished at constant rate
- lacktriangle Upper bound on number of tokens o burstiness

17 09 2018